Series DK Type DKV and DKM

Desuperheaters to Control The Temperature of Superheated Steam (or Gas)

Figure 1: From Left DKV, DKM

Desuperheating (cooling) the steam can simply be achieved by injecting water into the steam flow. When injected, the water is evaporated by means of the desuperheater nozzles. Thereby, the water absorbs heat and consequently the temperature of steam is reduced. The DKV desuperheater is designed so that even at low injection water quantities, an efficient spray of very fine droplets (mist) is obtained.

The nozzles in the sprayhead are designed to give the injection water a high velocity, and a radial rotating movement under all conditions. The result is a fine pressure atomization and very quick evaporation (see fig. 2).

Features

- > Optimum characteristics for accurate temperature control available
- > High operating temperature (ASME 650 °C; DIN EN 600 °C)
- > Large allowable delta p water/steam pressure difference of up to 100 bar (1450 psi)
- > Excellent atomizing characteristics at a delta p water/steam of 5 bar (72.5 psi) and at steam velocity of 10 m/s possible. The field of application starts at steam velocities of 5 m/s and a rate of overheating to the saturation of 3°C. More favorable conditions will improve the effectiveness of the desuperheater
- > Excellent control accuracy for the whole control range
- > Tight shut-off. No leakage in closed position and thus no emptying of the cooling water lines possible
- > No additional control valve required
- > High operation reliability. Due to simple parts, minimal wear

Figure 2

Principal of Operation

The temperature sensor (fig. 5) transmits a signal through the control system to the actuator (positioner) and positions the control piston according to the valve characteristic (fig. 3). The cooling fluid is now admitted to the injection nozzle and is accelerated at the nozzle insert. The cooling fluid is injected as a very fine water spray cone, and the small droplets are quickly evaporated and absorbed by the independent steam (hot gas).

Our high quality atomization of the cooling liquid is the basis of a good mixing from cooling fluid and steam at all load conditions. The position of the valve seat, just before the spray head, provides a tight shut-off in the closed position, so that dripping is prevented (the piston is lapped into the seat!). The small number of moving parts results in a reliable operation of the valve.

1:10

90 100 Hub(%)

ke[%]

1:25

1:50

Figure 3

60

50

Materials, Size and Classes

1.0460/A105 1.5415 1.7335/A182F12CI.2 1.7383/A182F22CI.3 1.4903/A182F91

The body material is selected according to temperature and pressure conditions of steam and water. Internal parts are various stainless steel (min 13% chrome).

Type DKV

The DKV desuperheater is available in a standard body size with a max. pressure rating of PN 400 (Class 2500).

Type DKM

The mini desuperheater can be used in steam piping from the nominal diameter DN 50/NPS 2 and is able to precisely inject extremely small amounts of cooling water.

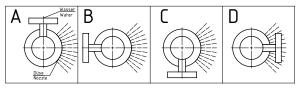
_...ea gl.%

10 20 30 40 50 60 70 80

Туре	Inlet Flanges	Mounting Flanges	Mounting Flange Internal Pipe-Diameter
DKV	DN 25 to 65 / NPS 1 to 2½	DN 80 / NPS 3	76 mm
DKV	PN 16 to 400 / Class	150 to 2500	70 11111
DKM	DN 15 to 40 / NPS ½ - 1½	DN 50 / NPS 2	43 mm
DKIVI	PN 16 to 400 / Class	150 to 2500	45 11111

Installation

The desuperheater can be installed on a stub on the steam pipe (see fig. 8, 9). A minimum height between the flange and the steam piping should be observed (see fig. 7). Water is injected in the same direction as the steam flow. The desuperheater can be installed in a vertical or horizontal position. The spray nozzle orientation, in regard to the water flange position, can be selected according fig. 4.

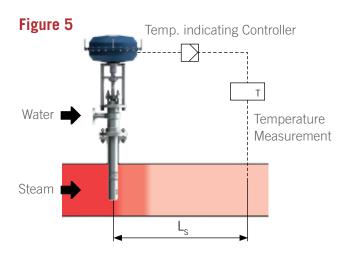

We recommend installing a hat shaped sieve in front of the radiator with a mesh of 0.1mm and a wire diameter of 0.063 mm

Minimum requirement for the nominal diameter of the steam piping:

Table 2: Minimum D-dimension

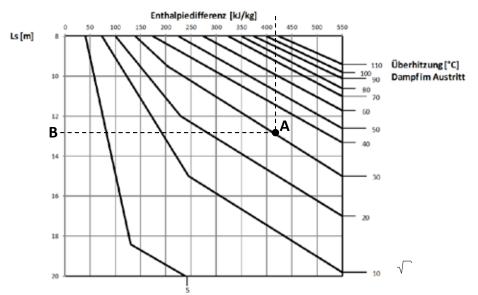
Туре	Stroke (mm)	D min.
	32	DN 150 / NPS 6
DKV	55	DN 200 / NPS 8
	80	DN 2007 NP3 8
DKM	10	DN 50 / NPS 2

Figure 4: Water Connection Flange Options


The minimum distance - Ls - (see fig. 5) required between the desuperheater and the sensing element depends on service conditions (see fig. 6).

Instrumentation

A temperature sensing element transmits the steam temperature to a temperature controller. This controller sends a signal (electric or pneumatic) to the actuator, which results in an upward or downward repositioning of the desuperheater stem and control piston. Thus, the injection water quantity and subsequently the steam temperature are controlled.


Actuator

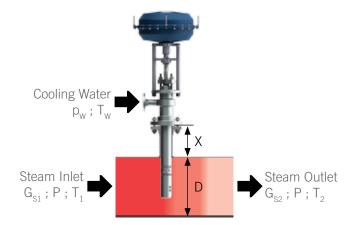
The desuperheater can be fitted with all electric, pneumatic or electric/hydraulic actuators. For manual operations the valve can be fitted with a hand wheel.

Sizing and Selection

Figure 6: Distance Between Desuperheater and Temperature Sensor

Example:

Enthalpy change between inlet- and outlet steam = 420 kJ/kg. Temperature of outlet steam is 30°C above saturation temperature. Draw a vertical line from 420 kJ/kg until it intersects with the 30°C superheat line graph (point A). The required minimum distance of the temperature sensor from the desuperheater can be read from point B in the ordinate axis on the graph; the value shown in the example is Ls~13 m.


Sizing and Selection

Data required for sizing and selection:

- GS = steam flow (kg/hr or lbs/hr)
- P = steam pressure (bar/psi)
- T1 = temperature inlet steam (°C/°F)
- T2 = temperature outlet steam (°C/°F)
- pW = cooling water pressure (bar/psi)
- TW = cooling water temperature ($^{\circ}C/^{\circ}F$)
- DX = diameter of steam piping

 $\begin{array}{l} \mathsf{X} \ = \mathsf{D}\mathsf{K}\mathsf{V} = 150 \ \mathsf{mm} \\ \\ \mathsf{D}\mathsf{K}\mathsf{M} = 100 \ \mathsf{mm} \end{array}$

Figure 7: D = Diameter of Steam Piping

^{*}Above values are for DN 300 pipe sizes, for other pipe sizes multiply distance by 0.06 D (D = pipe dia.)

Table 3: Max. KV and (CV)- Value

Туре	Stroke (mm)	Linear	1:10	1:25	1:50
	32	5.5 (6.4)	4.0 (4.6)	3.5 (4.1)	3.2 (3.7)
DKV	55	8.0 (9.3)	5.8 (6.7)	5.2 (6.0)	4.7 (5.4)
	80	10.0 (11.6)	7.3 (8.4)	6.5 (7.5)	5.9 (6.8)
DKM	10		1 (1.2)	

KV (CV) - values of the standard sprayheads *Max. KV (CV) value

Calculation

Calculation of the injection water quantity

$$G_{w} = G_{s} \times \frac{h_{1} - h_{2}}{h_{2} - h_{w}}$$
 (k/hr)

 $Q_{W} = \frac{G_{W}}{S.G. \times 1000}$

Calculation of the K_v (C_v) K_v = Q_w $\neg \sqrt{\frac{S.G.}{Dp}}$

 $C_v = 1.1561 \times K_v$

Select K_v (C_v) and corresponding stroke of the valve from table 3.

Check max. stroke versus steam pipe diameter in table 2.

Example

 $\begin{array}{ll} G_{s} = 100,000 \mbox{ kg/hr} & p = 50 \mbox{ bar (a)} \\ T_{1} = 430 \ ^{\circ}\mbox{C} & T_{w} = 190 \ ^{\circ}\mbox{C} \\ T_{2} = 330 \ ^{\circ}\mbox{C} & p_{w} = 140 \mbox{ bar (a)} \\ \mbox{S.G.} = 0.885 \end{array}$

From steamtable find enthalpy at inlet (h_1) and outlet (h_2) conditions.

 $G_w = 100,000 \times \frac{3270.4 - 3016.1}{3016.1 - 813.6} = 11546 \text{ kg/hr}$

$$Q_{\rm w} = \frac{11546}{0.885 \times 1000} = 13 \text{ m}^3/\text{hr}$$

Dp = 140 - 50 = 90 bar

$$K_v = 13 - \sqrt{\frac{0.885}{90}} = 1.29; K_v \text{ (selected)} = 1.5$$

Nomenclature

 K_v (C_v) = valve flow coefficient (m³/h resp. gal/min)

S.G. = specific gravity injection water (kg/dm3)

 $G_s = steam$ flow (kg/hr resp. lbs/hr)

 $Q_w =$ injection water quantity (m³/hr or gpm)

 $G_w =$ injection water quantity (kg/hr or lbs/hr)

 $h_1 = enthalpy inlet steam (kJ/kg)$

 $h_2 = enthalpy outlet steam (kJ/kg)$

 $h_w = enthalpy injection water (kJ/kg)$

 $Dp = p_w - p$

Connection Code

Table 4: Connection Code

Туре	Actuator Code	Water Connection / Size Code	Pressure Rating
DKV	P = Pneumatic	03 = DN 15 (NPS ½)	3 = PN 25 / Class 150
DKM	R = Electric	05 = DN 25 (NPS 1)	4 = PN 40
	O = Hydraulic	07 = DN 40 (NPS 1 ¹ / ₂)	5 = PN 64 / Class 300
	M = Manual drive	08 = DN 50 (NPS 2)	6 = PN 100 / Class 600
		09 = DN 65 (NPS 2 ¹ / ₂)	7 = PN 160 / Class 900
			8 = PN 250 / Class 1500
			9 = PN 320
			0 = PN 400 / Class 2500
Connection Code	Design Values Code	Value Mounting Flange Code	Housing Material Code
B = British	PX = equal % 1:50	08 = DN 50 (NPS 2)	1 = 1.0460/A105
Standard	PX = equal % 1:25	10 = DN 80 (NPS 3)	2 = 1.5415
F = DIN EN	PX = equal % 1:10	11 = DN 100 (NPS 4)	3 = 1.7335/A182F12CI.2
G = GOST	LH = Linear		4 = 1.7383/A182F22CI.3
J = JIS			5 = 1.4903/A182F91
U = ASME			0 = Special
S = Special			

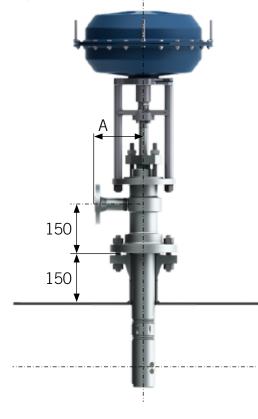
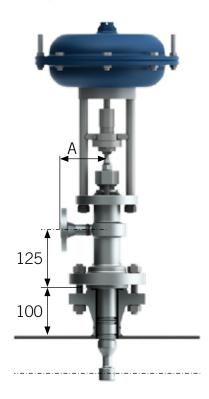
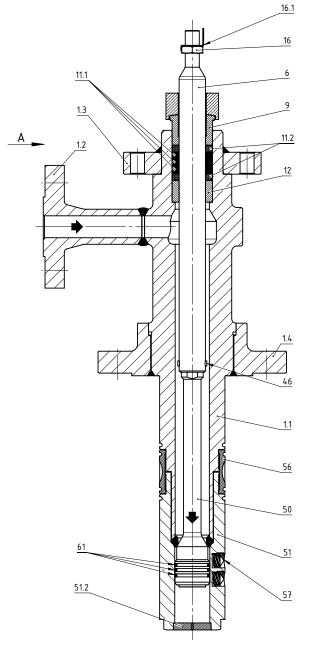
Example:

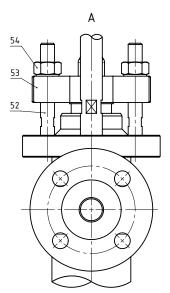
DKVP057/107U-PL-1 = Valve Type DKV; suitable for pneumatic actuator; water connection 1"/900 lbs; mounting flange 3"/900 lbs; flanges ASME; parabolic 1:10 characteristic; body material acc. DIN 1.5415.

Table 5: Dimension A

Tuno		PN/Class									
Туре	DN/NPS	63/300	100/600	160/900	250/1500	400/2500					
	≤40 / 1½	150 mm		175	175 mm						
DKV	>40 / 11/2	175	mm	225	300 mm						
DKM	≤25 / 1	105		160 mm							
DKM	>25/1	135 mm		185 mm							

Figure 8: DKV


Figure 9: DKM

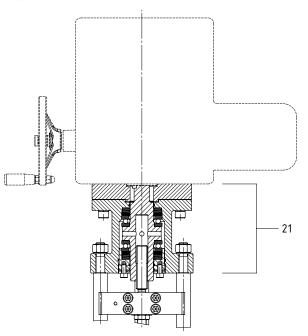
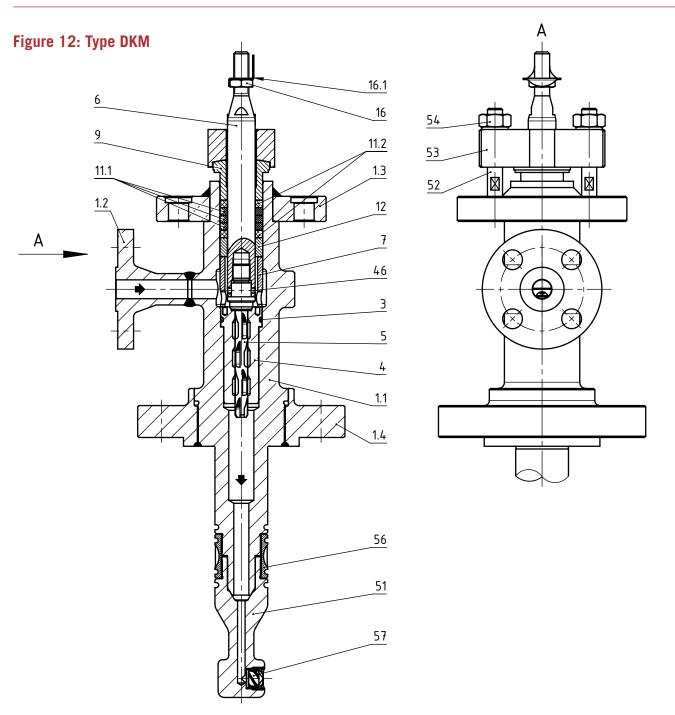


Figure 10: Type DKV

Parts and Materials

Table 6: Parts and Materials List (Fig. 10)

Pos.	Qty.	Description	Material
1	1	Housing (assy.)	*1
1.1	1	Housing	*1
1.2	1	Flange	*1
1.3	1	Flange	*1
1.4	1	Flange	*1
6	1	Stem	1.4057/A276 (431)
9	1	Packing Follower	1.4122
11.1	3	Packing Ring	GRAFIT
11.2	2	Packing Ring	GRAFIT
12	1	Bottom Ring	1.4122
16	1	Hexagon Nut	4
16.1	1	Safety Plate	A4
46	1	Pin	1.4301/A182F304H
50	1	Control Piston	1.4122
51	1	Spray Head	1.4006/AISI410
51.2	1	Bottom Plate	1.4006/AISI410
52	2	Stud Bolt	1.7709, 1.4923
53	1	Packing Gland	*1
54	2	Hexagon Nut	1.7218, 1.4923
56	1	Tighten Ring Nut	1.4006/AISI410
57	*2	Nozzle	1.4301, 1.4313
61	3	Piston Ring	1.4923, Stellite 6


*1 Material - see table: Housing material

*2 stroke 32 = 6, stroke 55 = 9, stroke 80 = 12

Table 7: Additional Parts and Materials (Fig. 11)

Pos.	Qty.	Description	Material
21	1	Gearbox	various

Table 8: Parts and materials list DKM (Figure 12)

Pos.	Qty.	Description	Material
1	1	Housing (assy.)	*1
1.1	1	Housing	*1
1.2	1	Flange	*1
1.3	1	Flange	*1
1.4	1	Flange	*1
3	1	O-Ring	EPDM
4	1	Cascade Connector	1.4122
5	1	Valve Body	1.4122
6	1	Stem	1.4057/A276(431)
7	1	Spacer Ring	1.4122
9	1	Packing Follower	1.4122
11.1	3	Packing Ring	GRAFIT
11.2	2	Packing Ring	GRAFIT
12	1	Bottom Ring	1.4122
16	1	Hexagon Nut	4
16.1	1	Safety Plate	A4
46	1	Pin	1.4301/A182F304H
51	1	Spray Head	1.4006/AISI410
52	2	Stud Bolt	1.7709, 1.4923
53	1	Packing Gland	*1
54	2	Hexagon Nut	1.7218, 1.4923
56	1	Tighten Ring Nut	1.4006/AISI410
57	1	Nozzle	1.4301, 1.4313

*1 Material - see table: Housing material

The Following Data are Required to Prepare a Quotation:

- > Valve operating- and design data (as per page 6+7)
- > Type of actuator and required accessories: e.g. pneumatic actuator, make...; failsafe open; incl. electro/pneumatic positioner + air filter/reducer station + limit switches, e.g. electric actuator make...
- Installation position:
 Standard: valve stem vertical upward
 Option: valve stem horizontal
- > Which inspections / certificates

Standard Tests Are:

- > Dimensional Check
- > Visual Inspection
- > Hydraulic Pressure Test
- > Seat Leakage Test
- > KV/CV-Valve Test
- > Functional Test (mechanical)

			Sch	Schroedahl Desuperheater quotation Data sheet												
Custo	mer											Quo	tation			
Order												Pric	r referer	nce		
Which inspect												Qua	intity			
Projec		-					_					_				
AKZ /		-														
							_	Sizing and	selection							
Water	pressi	ure				bar g			Steam pr	essure				bar	8	
Water	temp.	0				CS			team te	mp.°				С		
									s type / de							
		_	NPS	Class		Connect			Sealing :	urface	Steam flow					
	g Wate	er		+		ASME E			F		0 A 🛫	ΟВ	0	οc	0	D
Moun flange	ting s			1		ASME E	16.	БK	F							
	 i pipinį	g		Wall thi	ckness	1		M*			-					
				[mm]				[mm]								
Install	ation	0) vertical	O horiz	ontal	Stroke [mm]			Parabolic characteris	tic	%			
Housi	ng	-		-		Paint									_	
mater	ial			1												
Kvs [r	n³/h]					Medium										
								Service of								
Pos.K		VQ	ty. P		oefore inj ure Tem		nalp	y Qty.	Pressur	ter injectio e Temp.E		Qty.	Co Press	ioling 1	Water Temp.E	nthalpy
r us.N		m³/h	kg/h	bar a	°Ck	J/k		kg/h	bar a	°Ck	J/kg	kg/h	bar a		"Ck	J/kg
1		1 and	1.8/11	uul d	- Ch	3/6	0	- NBA - 11	- un d		sing		0001 0	-		21116
2									+						_	
3													1			
4							_									
5																
6			_	_					_				_			
7							_		_				_	_		
Monu	facture		1				_							1] handv	whool
Type	with	-1	-												nandv	
	p actu	ator	opens []	oar]c				loses (ba	ar]						provide	
Spring			O open		O clos	es	1	O double		On.a.						
Input	signal		O electr		O prie	umatic		O n. a.						1	🗆 Ampli	fier
	y press	sure			Pres	sure		Soleno	id valve					E	Block	age
[bar]					reduce	1										
								Com	nents							
* Leni	zth mis	d steam	piping to	the upper e	edge of th	ie mountin	g fla	ange								
Revisi			Date		escription		<u>ه. ن</u>	3-				Nar	ne			
0		-														
1	_	-														
2																
								hshof-Mitte								

In addition to the DKV and DKM desuperheaters, our range includes the following products for controlling the temperature:

Type DKH

DKH desuperheater with particularly long lance for large steam piping and special requirements.

Type DKT

DKT drive desuperheaters for an extended control range (compared to DKV), very short cooling lines and cooling close to the saturation state.

Type DU

Steam converter-control valve DU for steam cooling while reducing pressure.

CIRCOR Energy is a global manufacturer of highly engineered valves, fittings, pipeline and associated products for general, critical and severe service applications in the Oil & Gas, Power Generation and Process Industry markets. CIRCOR Energy continuously develops precision technologies to improve our customers' ability to control the flow of the world's natural resources.

Continuously Improving Flow Control. Worldwide.

Asia | Europe | Middle East | North America | South America

Schroedahl

Schroedahl – Germany Schoenenbacher Str 4 51580 Reichshof-Mittelagger, Germany Phone: +49 2265 9927-0 Schroedahl@circor.com www.circorenergy.com/schroedahl Schroedahl – Americas 945 BunkerHill Road, Suite 650 Houston, TX 77024 USA Phone: +1 713-975-8351 SchroedahlAmericas@circor.com www.circorenergy.com/schroedahl

www.circorenergy.com

©2016 CIRCOR Energy. All rights reserved.